Inserção do Brasil nos biocombustíveis aeronáuticos

Associação das Indústrias Aeroespaciais do Brasil (AIAB)

1. A aviação civil e o meio ambiente

A preocupação da aviação civil com a sua interação com o meio ambiente, em decorrência da grande visibilidade do referido meio de transporte e características dos seus veículos, começou na metade do século passado, particularmente com a introdução em larga escala dos aviões de transporte aéreo propulsionados por motores a jato.

Graças à extensão do tecido urbano das cidades, circundando os aeroportos, em geral localizados inicialmente longe das áreas centrais urbanas, o ruído e a emissão de particulados foram o foco de atenção, determinando o estabelecimento de limitações para diminuição dos efeitos e transformando os padrões adotados em regulamentos internacionais.

A distinção entre veículos aéreos e transportes terrestres e aquaviários é que os primeiros – exceto que no início e no fim de seu trajeto fazem uso de superfícies de rolamento no solo – constroem por meios próprios no espaço as suas faixas de rolamento (sem acostamento), portanto não existem fronteiras físicas no seu deslocamento. Isso determinou a criação, em 1944, de uma agência internacional para tratar dos assuntos da aviação civil, a Organização da Aviação Civil Internacional (Oaci).

Os objetivos principais da Oaci são a organização mundial do transporte aéreo por meio de princípios e técnicas comuns de navegação aérea, de certificação de aeronaves e de construção de aeroportos, visando estabelecer padrões internacionais comuns para a segurança, a eficiência, a economia dos serviços aéreos e a diminuição de danos ao meio ambiente.

As atividades da Oaci relativas ao meio ambiente são realizadas por um setor da Oaci denominado *Icao Council's Committee on Aviation Environmental Protection* (Caep), constituído por observadores dos países signatários das organizações intergovernamentais e de entidades representativas da indústria aeronáutica, do transporte aéreo regular e não regular, dos provedores de serviços de controle de tráfego aéreo e aeroportuário, o qual coordena em âmbito mundial, desde 1996, o ruído de aeronaves e as emissões produzidas por motores e turbinas aeronáuticas, entre as quais padrões relativos a NOx.

Por ocasião do acordo de Kyoto, que responsabiliza somente os países, a Oaci foi designada como responsável para tratar das emissões extrafronteiras relativas ao efeito estufa do transporte aéreo internacional.

Do ponto de vista de emissões de CO₂, o transporte mundial participa com 2% (base 2005). Entretanto, fazendo uma projeção de seu crescimento até 2050 e congelando a situação presente (o que não tem ocorrido, como será evidenciado em seguida), sua participação seria aproximadamente de 5%.

A particularidade da aviação enfatiza a enorme interação entre os fornecedores das aeronaves, dos serviços aéreos, dos serviços de controle de tráfego aéreo e os de serviços aeroportuários para oferecer, em primeiro lugar, a segurança, o mínimo de dano ambiental e a eficiência do transporte aéreo, hoje ferramenta essencial e indispensável para o crescimento da economia mundial.

2. Aviação civil – emissões e condicionantes do seu veículo

A emissão de CO₂ no transporte aéreo decorre do consumo de combustível pelas aeronaves. No passado, razões de mercado voltadas ao aumento da eficiência do uso de energia utilizada determinaram a diminuição, na última metade do século passado, em 70% do combustível gasto por assento disponível nos aviões comerciais. A inclusão de aeronaves cada vez mais modernas baixou o consumo de oito litros por passageiro/100 km, em 1985, para três litros por passageiro/100 km, em 2010, como mostra a Gráfico 1, eficiência similar à de carros de passeio, porém a velocidade dez vezes maior.

A elevada sofisticação tecnológica necessária para aumentar a segurança e a eficiência energética das aeronaves implica um longo ciclo de desenvolvimento e elevado custo próprio intrínseco da tecnologia, tornando as aeronaves um bem de capital de custo extremamente elevado, o que exige uma longa vida útil para a rentabilidade do investimento. Em termos simples, a unidade do produto oferecido pelas empresas aéreas aos seus clientes: um assento disponível custa entre US\$ 300 mil e US\$ 400 mil em termos de capital investido.

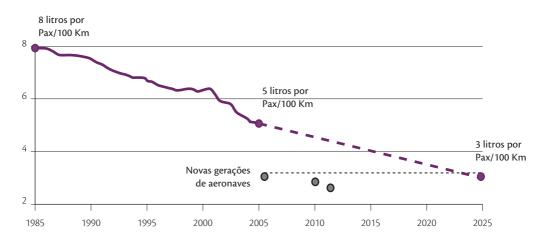


Gráfico 1. Consumo de combustível por passageiro.

Em decorrência, a linha de produção de um tipo de avião estende-se por 20 anos e o acréscimo de uma vida útil de 30 anos. Assim, a frota (e sua tecnologia) terá uma permanência de aproximadamente 50 anos no mercado.

A consequência dessa condicionante é que o combustível hoje usado em todo o mundo é único: querosene de aviação (origem fóssil), consagrado pelas suas qualidades e disponibilidade mundial. Assim, hoje não é possível ou prevista sua substituição por outro tipo de combustível.

3. Ações da aviação civil mundial referente ao meio ambiente

As entidades mundiais representantes dos quatro componentes da aviação civil, interdependentes no processo que visa melhorar a eficiência do uso de combustíveis, quais sejam, *International Air Transport Association* (lata), que representa a indústria de transporte aéreo; *International Coordinating Council of Aerospace Industries Associations* (ICCAIA), que representa as associações de indústrias aeroespaciais; *Airports Council International* (ACI), que representa os aeroportos internacionais; *Civil Air Navigation Service Organisation* (Canso), que representa os fornecedores de serviços de controle de tráfego aéreo, em coordenação com a Oaci, apresentaram oficialmente, em 2009, o seguinte compromisso:

- Uma abordagem setorial global para um problema global;
- A Oaci responsável pela liderança na gestão das emissões da aviação;

- · Comprometimento da indústria da aviação civil mundial:
 - Melhoria média de 1,5% por ano em termos de eficiência energética até 2020;
 - Obrigação de crescimento neutro de carbono (CO₂) a partir de 2020;
 - Redução absoluta em 50% das emissões de CO₂ em 2050, em comparação com os níveis de 2005, do qual cabe destacar dois princípios fundamentais: a não existência de decisões unilaterais por países/regiões e a liderança da OACI no processo.

Para visualização do referido compromisso, a Gráfico 2 apresenta os *roadmaps* (caminhos) que a aviação civil aplicará para alcançar seus objetivos.

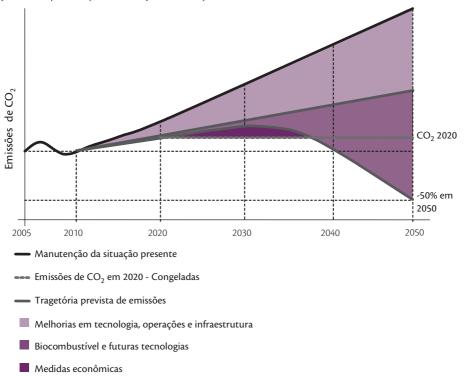


Gráfico 2. Roadmap da aviação civil para redução de emissões

Da referida figura, cabe destacar dois pontos:

 O primeiro ganho, a partir de 2010, em emissões será o uso de novas tecnologias já desenvolvidas para os aviões, a substituição de aviões antigos e ineficientes e melhorias no tráfego aéreo e na operação de aeroportos; • O segundo ganho, a partir de 2020, será o uso de biocombustíveis: no caso, bioquerosene, ou seja, querosene obtido de biomassas, de origem renovável, que deverá ter as mesmas características do querosene fóssil e poderá a ele ser misturado; e a inclusão de futuras tecnologias aeronáuticas, o que permitirá, em 2050, o equivalente à diminuição de emissões CO₂ em 50%, comparado com o ano de 2005.

A confiança na mistura de 50% de bioquerosene com querosene fóssil é baseada em cinco voos de demonstração, já realizados, usando diferentes aviões comerciais e diversas fontes de biomassas (misturadas ou isoladas): babaçu, coco, pinhão manso (*jatropha*), algas e camelina, todos com sucesso, evidenciando a viabilidade.

Entretanto, resta um longo percurso para transformar a escala de produção laboratorial para as indústrias, a emissão das normas para certificação de bioquerosene em si e da sua mesclagem com querosene fóssil e os respectivos ensaios e testes de qualificação.

A indústria aeronáutica está perseguindo outros alvos, no que tange ao meio ambiente, para aviões a serem produzidos a partir da terceira década do presente século, com previsão de uma redução de NOx maior que 75% e de ruído maior que 50%.

4. Ações da aviação civil brasileira – biocombustíveis

O Brasil é reconhecido mundialmente como país precursor do desenvolvimento e uso em larga escala do bioetanol em veículos terrestres e sua adição à gasolina para diminuição de poluentes. É também o pioneiro do uso com certificação pela Agência Nacional de Aviação Civil (Anac) do bioetanol em motores a pistão aeronáuticos, caso do avião agrícola Ipanema, da Embraer.

A Política do Desenvolvimento Produtivo – Indústria Aeronáutica selecionou várias áreas estratégicas para pesquisa, desenvolvimento e inovação, entre as quais combustíveis alternativos para aviação.

O Congresso Nacional, por sua vez, acolheu o Projeto de Lei nº 3213/2009, proposto pelo presidente da Frente Parlamentar em Defesa da Indústria Aeronáutica Brasileira, deputado Federal Marcelo Ortiz, que tem "Dispõe sobre a criação do Programa Nacional de Bioquerosene como incentivo à sustentabilidade ambiental da aviação brasileira e dá outras providências".

Duas empresas aéreas brasileiras farão, entre 2010 e 2011, voos de demonstração de viabilidade técnica do uso de mistura de 50% de bioquerosene desenvolvidos no Brasil, a saber:

- TAM Linhas Aéreas S/A
 Aviões Airbus A 320, motores CFM56-5B: mistura de bioquerosene obtido do pinhão manso (jatropha).
- Azul Linhas Aéreas Brasileiras
 Avião Embraer E190 motor CF34-10E: mistura de 50% de bioquerosene de cana-de-açúcar, obtido por fermentação.

Em 7 de maio de 2010, foi formada a Aliança Brasileira para Biocombustíveis de Aviação (Abraba), composta por empresas aéreas, fabricantes de aeronaves, entidades de pesquisa de biocombustíveis e produtores de biomassas (ABPPM, AIAB, Algae, Amyris, Azul, Embraer, Gol, Tam, Trip e Unica).

Sua proposição é que "a utilização de biocombustíveis sustentáveis produzidos a partir de biomassas é fundamental para manter o crescimento da indústria de aviação em uma economia de baixa emissão de carbono. A reconhecida capacidade do Brasil em desenvolver fontes energéticas alternativas, aliada ao conhecimento das tecnologias aeronáuticas, resultará em um significativo ganho para o meio ambiente, minimizando o impacto sobre o desenvolvimento econômico".

5. Conclusão

O Brasil é reconhecido mundialmente como país precursor no desenvolvimento e uso em larga escala de biocombustíveis: bioetanol (inclusive na aviação geral) e biodiesel. A solução primordial escolhida pela aviação civil mundial, visando reduzir em 50% de forma absoluta suas emissões de carbono em 2050, é o uso de bioquerosene (*drop-in*), devidamente certificado, produzido a partir de biomassas diversas.

Portanto, nosso país não pode prescindir de uma presença forte na área de biocombustíveis aeronáuticos, sob pena de, no futuro, tornar-se dependente de importações, pois o seu uso será uma exigência mundial. A Aiab, em nome da Abraba, vem, portanto, colocar em foco, por ocasião da 4ª Conferência Nacional de Ciência, Tecnologia e Inovação, a necessidade brasileira de desenvolvimento de tecnologias próprias para bioquerosene, obtido a partir da grande diversidade de biomassas existentes no país, similarmente ao que está sendo realizado em países desenvolvidos.